Четверг, 08.12.2016, 19:01
TERRA INCOGNITA

Сайт Рэдрика

Главная Регистрация Вход
Приветствую Вас Гость | RSS
Главная » Книги

Марио Ливио / Был ли Бог математиком? Галопом по божественной Вселенной
02.06.2016, 15:51
Загадка
Несколько лет назад я выступал с докладом в Корнельском университете. На одном из слайдов в моей презентации значилось: «Бог – математик?» Едва этот слайд появился на экране, одна студентка в первом ряду ахнула и громко прошептала: «О Господи, надеюсь, нет!»
Я всего лишь задал риторический вопрос – и вовсе не пытался ни дать слушателям определение Бога, ни тонко поддеть тех, кто панически боится математики. Нет – я просто хотел загадать загадку, над которой мучительно ломали головы на протяжении веков самые независимые мыслители: указать на то, что математика, похоже, вездесуща и всемогуща. Подобные качества принято приписывать лишь божествам. Как сказал когда-то английский физик Джеймс Джинс (1877–1946): «Вселенная устроена так, словно ее конструировал чистый математик» (Jeans 1930). Такое чувство, что математика слишком уж хорошо описывает и объясняет не только Вселенную в целом, но даже некоторые довольно хаотические начинания, предпринимаемые людьми.
Всякий раз, когда физики пытаются сформулировать теории об устройстве Вселенной, биржевые аналитики чешут в затылке, чтобы предсказать следующий обвал на фондовой бирже, нейрофизиологи строят модели функционирования мозга, а статистики на службе у военной разведки работают над оптимизацией распределения ресурсов, все они пользуются математикой. Более того, хотя они и пользуются конкретными методами, разработанными в различных областях математики, но при этом сверяются с одной и той же «математикой» в общем, понятном для всех смысле слова.
Что же наделяет математику таким невероятным могуществом? Или, как спросил однажды Эйнштейн: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта  (курсив мой. – М. Л. ), так прекрасно соотносится с объектами физической реальности?» (Einstein 1934).
Это ощущение полной растерянности нам не в новинку. Некоторые древнегреческие философы, в частности Платон и Аристотель, уже восхищались тем, что математика, похоже, способна формировать и направлять Вселенную, оставаясь, по всей видимости, вне пределов досягаемости людей, которые не могут ни менять ее, ни повелевать ею, ни влиять на нее. Английский философ и политолог Томас Гоббс (1588–1679) тоже не смог сдержать восхищения. В своем «Левиафане» Гоббс рисует величественную панораму своих представлений об основах общества и правительства, приводя геометрию в качестве образца рациональной аргументации (Hobbes 1651).

Так как мы видим, что истина состоит в правильной расстановке имен в наших утверждениях, то человек, который ищет точной истины, должен помнить, что обозначает каждое употребляемое им имя, и соответственно этому поместить его; в противном случае он попадет в ловушку слов, как птица в силок, и, чем больше усилий употребит, чтобы вырваться, тем больше запутается. Вот почему в геометрии (единственной науке, которую до сих пор Богу угодно было пожаловать человеческому роду) люди начинают с установления значений своих слов, которые они называют определениями.

Целые тысячелетия глубочайших математических исследований и философских размышлений так и не пролили света на тайну могущества математики. Более того, в некотором смысле завеса тайны стала еще плотнее. Знаменитый оксфордский математик сэр Роджер Пенроуз, к примеру, считает, что вместо одной загадки перед нами уже три. Пенроуз выделяет три разных «мира» – мир сознательного восприятия, физический мир  и платоновский мир математических форм . Первый мир – вместилище всех ментальных образов: как мы воспринимаем лица детей, как любуемся головокружительным закатом, как отзываемся на страшные военные фотографии. А еще именно в этом мире обитают любовь, ревность, предубеждения, а также наше восприятие музыки, аппетитных ароматов и страха. Второй мир – тот самый, который мы привыкли называть физической реальностью. В этом мире обитают живые цветы, таблетки аспирина, белые облака и сверхзвуковые самолеты, а еще – галактики, планеты, атомы, обезьяньи сердца и человечьи мозги. Платоновский мир математических форм, который для Пенроуза не менее реален, чем физический и ментальный, – родина математики. Именно там обнаруживаешь натуральные числа 1, 2, 3, 4 и так далее, все формы и теоремы евклидовой геометрии, законы движения Ньютона, теорию струн, теорию катастроф и математические модели поведения фондового рынка. И тут-то, как замечает Пенроуз, и таятся три загадки. Во-первых, мир физической реальности подчиняется законам, которые на самом деле пребывают в мире математических форм. Эта загадка ставила в тупик самого Эйнштейна. В таком же недоумении по этому поводу пребывал физик Юджин Вигнер (1905–1995), нобелевский лауреат (Wigner 1960).

Математический язык удивительно хорошо приспособлен для формулировки физических законов. Это чудесный дар, который мы не понимаем и которого не заслуживаем. Нам остается лишь благодарить за него судьбу и надеяться, что и в своих будущих исследованиях мы сможем по-прежнему пользоваться им. Мы думаем, что сфера его применимости (хорошо это или плохо) будет непрерывно возрастать, принося нам не только радость, но и новые головоломные проблемы.

Во-вторых, само воспринимающее сознание, обиталище сознательного восприятия, неведомо как зарождается именно в физическом мире. Но как именно материя  порождает сознание  – причем порождает в буквальном смысле слова? Сумеем ли мы когда-нибудь сформулировать теорию работы сознания, столь же цельную и убедительную, сколь, к примеру, наша нынешняя теория электромагнетизма? Тут цикл чудесным образом замыкается. Воспринимающее сознание благодаря какому-то загадочному механизму обладает доступом к математическому миру, поскольку именно оно то ли открывает, то ли создает и формулирует целую сокровищницу абстрактных математических форм и понятий.
Пенроуз не предлагает ответов ни на одну из этих трех загадок. Он просто делает лаконичный вывод: «Миров, несомненно, не три, а только один, о подлинной природе которого мы на сегодня не имеем ни малейшего представления». В этом признании гораздо больше смирения, чем в ответе учителя из пьесы английского драматурга Алана Беннетта «Сорок лет службы».

Фостер:  Сэр, мне по-прежнему не вполне понятна идея Святой Троицы.
Учитель:  Все очень просто – один есть три, три есть один. Если у вас по этому поводу есть сомнения, спросите учителя математики.


На самом деле загадка еще запутаннее. У того, что математика так хорошо описывает мир вокруг нас (Вигнер называл это «непостижимой эффективностью математики»), есть две стороны, одна поразительнее другой. Одну из них можно было бы назвать активной. Когда физики блуждают по лабиринтам природы, то освещают себе путь математикой: инструменты, которыми они пользуются и которые постоянно разрабатывают, модели, которые они конструируют, и объяснения, которые они предлагают, по сути своей математические. На первый взгляд это само по себе чудо. Ньютон наблюдал падение яблока, фазы Луны и приливы по берегам морей (не уверен, что он видел их воочию), а не математические формулы. Однако он каким-то образом сумел вывести из этих природных явлений ясные, лаконичные и неимоверно точные математические законы природы. Подобным же образом шотландский физик Джеймс Клерк Максвелл (1831–1879), когда он расширил рамки классической физики и включил в нее все электрические и магнитные явления, известные в шестидесятые годы XIX века, сделал это при помощи всего четырех математических формул. Задумайтесь об этом. Объяснение результатов целого ряда экспериментов в области света и электромагнетизма, на описание которых потребовались целые тома, свелось к четырем сухим формулам. Общая теория относительности Эйнштейна – случай еще более поразительный: это идеальный пример необычайно точной и самосогласованной математической теории, которая описывает самые основы мироздания – структуру пространства-времени.
Однако у загадочной эффективности математики есть и «пассивная» сторона, столь неожиданная, что напрочь затмевает «активную». Понятия и отношения, которые математики изучают ради чистой науки, даже и не думая об их практическом применении, спустя десятки, а иногда и сотни лет нежданно-негаданно оказываются решениями задач, которые коренятся в физической реальности! Как такое может быть? Возьмем, к примеру, довольно забавный случай с чудаковатым британским математиком Годфри Гарольдом Харди (1877–1947). Харди так гордился, что в его трудах не содержится ничего, кроме чистой математики, что подчеркивал в своей знаменитой книге «Апология математика», опубликованной в 1940 году: «Я никогда не делал ничего "полезного”. Ни одно мое открытие не способствовало ни прямо, ни косвенно увеличению или уменьшению добра или зла и не оказало ни малейшего влияния на благоустроенность мира (здесь и далее пер. Ю. Данилова )» (Hardy 1940). Так вот, представляете, он ошибся! Один из его трудов получил второе рождение под названием «Закон Харди-Вайнберга» (в честь Харди и немецкого врача Вильгельма Вайнберга (1862–1937)) – это основополагающий принцип, на который опираются генетики при изучении эволюции популяций. Говоря простыми словами, закон Харди-Вайнберга гласит, что если спаривание в большой популяции происходит совершенно случайно (и нет ни миграции, ни мутаций, ни селекции), то генетический состав от поколения к поколению не меняется. Даже отвлеченный на первый взгляд труд Харди по теории чисел  – исследование свойств натуральных чисел – нашел неожиданное практическое применение. В 1973 году британский математик Клиффорд Кокс применил теорию чисел, чтобы совершить прорыв в криптографии – науке о разработке шифров, и изобрел уникальный криптографический алгоритм. Алгоритм Кокса отправил на свалку истории другое утверждение Харди. В той же «Апологии математика» Харди заявил: «Никому еще не удалось обнаружить ни одну военную или имеющую отношение к войне, задачу, которой служила бы теория чисел». Очевидно, что он в очередной раз впал в заблуждение. Шифры играют определяющую роль в военном деле, без них невозможно налаживать связь. Так что даже Харди, один из самых ярых критиков прикладной математики, оказался против собственной воли (будь он жив, он бы наверняка визжал и отбивался) вовлечен в число создателей полезных математических теорий.
Но все это лишь верхушка айсберга. Кеплер и Ньютон обнаружили, что планеты нашей Солнечной системы описывают орбиты в форме эллипсов – тех самых кривых, которые на 2000 лет раньше изучал древнегреческий математик Менехм (ок. 350 г. до н. э.). Геометрии нового типа, которые описал Георг Фридрих Бернхард Риман (1826–1866) в своей классической лекции, прочитанной в 1854 году, как выяснилось, сослужили важнейшую службу Эйнштейну – именно они позволили описать ткань мироздания. Математический «язык» под названием «теория групп», разработанный юным гением Эваристом Галуа (1811–1832) исключительно ради того, чтобы определять, имеются ли у тех или иных алгебраических уравнений корни среди целых чисел, стал сегодня языком физиков, инженеров, лингвистов и даже антропологов, позволяющим описать все симметрии на свете. Более того, концепция закономерностей математической симметрии в известном смысле перевернула с ног на голову весь научный метод. На протяжении столетий путь к пониманию устройства мироздания начинался со сбора экспериментальных или наблюдательных фактов, после чего ученые методом проб и ошибок пытались сформулировать общие законы природы. Работа должна была начинаться с локальных наблюдений, после чего мозаику приходилось собирать по кусочкам. Когда в ХХ веке стало понятно, что структуру субатомного мира определяют четкие математические закономерности, современные физики стали поступать диаметрально противоположным образом. Они сначала привлекают принципы математической симметрии и настаивают, что законы природы и, разумеется, кирпичики, из которых состоит вещество, должны подчиняться определенным закономерностям, и выводят из этих предпосылок общие законы. Но откуда природа знает, что ей положено следовать абстрактным математическим симметриям?
В 1975 году Митч Фейгенабаум, который тогда был молодым специалистом по математической физике в Национальной лаборатории в Лос-Аламосе, играл со своим карманным калькулятором HP-65. Он изучал поведение одной простой функции. И обнаружил, что последовательность чисел, получавшаяся в результате вычислений, устремляется все ближе и ближе к определенному числу – 4,669…. Когда Митч изучил некоторые другие уравнения, то, к своему изумлению, обнаружил, что и там появляется то же самое загадочное число. Вскоре Фейгенбаум сделал вывод, что открыл некую универсальную закономерность, которая каким-то образом знаменует переход от порядка к хаосу, хотя объяснения этому найти не мог. Неудивительно, что поначалу физики отнеслись к этому весьма скептически. И в самом деле, с какой стати одно и то же число должно характеризовать поведение разных на первый взгляд систем? Первая статья Фейгенбаума проходила рецензирование в течение полугода, после чего ее отклонили. Однако довольно скоро эксперименты показали, что если нагревать жидкий гелий снизу, он ведет себя именно так, как предсказывает универсальное решение Фейгенбаума. Как выяснилось, так себя ведут и многие другие системы. Удивительное число Фейгенбаума возникало и при переходе от упорядоченного течения жидкости или газа к турбулентности и даже в поведении воды, капающей из крана. Перечень подобных случаев, когда математики «предвосхищали» потребности различных дисциплин на несколько поколений вперед, все пополняется и пополняется. Среди самых поразительных примеров загадочного и неожиданного взаимодействия между математикой и реальным (физическим) миром – история создания математической теории узлов. Математический узел похож на обычный узел на тонком шнуре, концы которого намертво сращены. То есть математический узел – это замкнутая кривая без свободных концов. Как ни странно, первоначальный толчок развитию математической теории узлов дала ошибочная модель атома, разработанная в XIX веке. Когда эту модель отвергли – спустя всего 20 лет после создания, – теория узлов стала разливаться дальше как сравнительно малоизвестная отрасль чистой математики. Невероятно, но факт: в наши дни это абстрактное начинание неожиданно нашло широчайшее применение в самых разных областях исследований – от молекулярной структуры ДНК до теории струн, попытки объединить субатомный мир с гравитацией. К этой восхитительной истории я еще вернусь в главе 8, поскольку ее циклическая структура, пожалуй, лучше всего показывает, как из попыток объяснить физическую реальность возникают отрасли математики, которые затем уходят в область отвлеченной математики, однако впоследствии неожиданно возвращаются в реальность.

Изобретение или открытие?
Даже такой сжатый рассказ уже содержит в себе массу убедительных доводов в пользу того, что Вселенная либо подчиняется математике, либо, как минимум, поддается анализу посредством математики. Как покажет эта книга, практически все, а может быть, и абсолютно все человеческие начинания, похоже, основаны на каком-то скрытом математическом механизме, даже там, где этого совсем не ждешь. Возьмем хотя бы пример из мира финансов – модель ценообразования опционов Блэка-Шоулза (Black and Scholes 1973). Модель Блэка-Шоулза стяжала своим разработчикам Нобелевскую премию по экономике (правда, только двоим из трех – Майрону Шоулзу и Роберту Кархерту Мертону, так как Фишер Блэк скончался до присуждения премии). Главная ее формула позволяет понять, как устроено ценообразование опционов (это такие финансовые инструменты, которые позволяют игрокам на бирже покупать или продавать ценные бумаги в какой-то момент в будущем по заранее согласованной цене). Однако тут-то и начались неожиданности. Эта модель опирается на явление, которое физики изучают уже десятки лет – броуновское движение, оживленное мельтешение крошечных частичек вроде пыльцы, если размешать их с водой, или частичек дыма в воздухе. А потом, будто этого оказалось мало, выяснилось, что то же самое уравнение применимо и к движению сотен тысяч звезд в звездных скоплениях. Выражаясь словами Алисы, все страньше и страньше, не так ли? Конечно, космос есть космос, но ведь бизнес и финансы – это определенно плод человеческого разума!
Или вспомним, с какими трудностями часто сталкиваются производители электронных комплектующих и разработчики компьютеров. В печатных платах нужно проделывать лазерным сверлом десятки тысяч отверстий. Чтобы снизить затраты, разработчики компьютеров стараются, чтобы сверло не вело себя словно «заблудившийся турист». Задача состоит в том, чтобы проложить кратчайший маршрут между отверстиями, при котором сверло проходило бы точку, где расположено каждое отверстие, ровно один раз. Как выяснилось, математики уже успели позаниматься этой задачей еще в 20-е годы ХХ века, и тогда она получила название «Задача коммивояжера». Суть ее такова: коммивояжеру или политику в рамках предвыборной компании нужно объехать определенные города, причем стоимость дороги между каждыми двумя городами известна заранее. Путешественник должен проложить самый выгодный маршрут, чтобы объехать все города и затем вернуться в исходную точку. В 1954 году было получено решение задачи коммивояжера для 49 городов в США. В 2004 году – для 24 978 населенных пунктов в Швеции. Иными словами, электронная промышленность, компании, которые прокладывают маршруты для развозки посылок и покупок, и даже японские производители игровых автоматов под названием патинко – это что-то вроде пинбола, – которым приходится вбивать тысячи гвоздиков, должны полагаться на математику при выполнении простейших, казалось бы, действий – сверлении отверстий, составлении расписания, разработке компьютерного «железа».
Математика проникла даже в те сферы, которые по традиции никак не ассоциируются с точными науками. Например, существует «Журнал математической социологии» («Journal of Mathematical Sociology » (в 2006 году вышел его тридцатый выпуск), тематика которого – статьи о математическом понимании сложных общественных структур, организаций и неформальных объединений. В журнале публикуются статьи по самым разным вопросам от математических моделей прогнозов общественного мнения до предсказания взаимодействий внутри тех или иных социальных групп.
Если двинуться в обратном направлении, от математики в сторону гуманитарных наук, мы попадем в область вычислительной лингвистики, которая изначально привлекала исключительно специалистов по информатике, а сейчас превратилась в пространство междисциплинарных исследований, где совместно трудятся лингвисты, психологи-когнитивисты, логики и разработчики искусственного интеллекта, исследующие тонкости естественного развития языков.
Неужели это какой-то хитроумный розыгрыш – ведь все попытки человека что-то понять, в чем-то разобраться приводят в конце концов к открытию все новых отраслей математики, по законам которой, как видно, создана и сама Вселенная, и мы, ее сложные творения? Неужели математика, как любят говорить педагоги, – спрятанный учебник, тот, по которому учится преподаватель, сообщая ученикам неполную версию, чтобы казаться умнее? Или, если обратиться к библейской метафоре, математика – это и есть плод древа познания?
Как я уже отмечал в начале этой главы, непостижимая эффективность математики задает множество интереснейших загадок. Можно ли считать, что математика существует независимо от человеческого разума? Иначе говоря, можно ли считать, что мы просто открываем  математические истины, как астрономы открывают неизвестные ранее галактики? Или математика – всего лишь изобретение  человека? Если математика и правда существует в какой-то абстрактной стране чудес, как этот волшебный мир соотносится с физической реальностью? Каким образом человеческий мозг со всеми его ограничениями, о которых нам прекрасно известно, находит путь в этот незыблемый мир вне времени и пространства? С другой стороны, если математика не более чем человеческое изобретение и вне нашего разума не существует, как объяснить тот факт, что изобретение огромного количества математических истин по какому-то волшебству надолго опередило вопросы об устройстве Вселенной и человеческой жизни, которые возникли лишь много веков спустя? Ответить на эти вопросы непросто. Не раз и не два на страницах этой книги вы увидите, насколько разные ответы дают на них даже современные математики, психологи-когнитивисты и философы. В 1989 году французский математик Ален Конн, удостоенный двух самых престижных премий по математике – Филдсовской медали (1982) и премии Крафорда (2001), высказался вполне ясно и недвусмысленно (Changeux and Connes 1995).

Возьмем, к примеру, простые числа (то есть те, которые делятся только сами на себя и на единицу. – М. Л. ), – насколько я могу судить, они составляют куда более стабильную реальность, чем та материальная реальность, которая нас окружает. Математика, который трудится над своей задачей, можно уподобить естествоиспытателю, который изучает неведомый мир. Основные факты обычно выводят из опыта. Например, если проделывать несложные вычисления, становится понятно, что последовательность простых чисел продолжается бесконечно. Значит, задача математика – доказать, что существует бесконечно много простых чисел. Это, разумеется, очень старый результат, мы обязаны им еще Евклиду. Среди самых интересных следствий из этого доказательства – если когда-нибудь кто-нибудь заявит, будто нашел самое большое простое число, будет легко показать, что он заблуждается. Это справедливо для любого доказательства. То есть мы сталкиваемся с реальностью, которая в точности так же неопровержима, как и реальность физическая.

Мартин Гарднер, знаменитый писатель, автор множества книг и статей о развлекательной математике, тоже придерживается того мнения, что математика – это открытие . Он ничуть не сомневается, что числа и математика существуют сами по себе и неважно, знают ли о них люди. Как-то раз он остроумно подметил: «Если два динозавра повстречали на полянке двух других динозавров, всего их было четыре, даже если поблизости не было людей и некому было это пронаблюдать, а сами зверюги по глупости об этом не догадывались» (Gardner 2003). Как подчеркивал Конн, сторонники точки зрения «математика-открытие» (что, как мы вскоре убедимся, соответствует взглядам Платона) указывают, что как только удается усвоить какое-то одно математическое понятие, скажем, понятие натуральных чисел 1, 2, 3, 4…, как мы натыкаемся на неопровержимые факты вроде 32 + 42 = 52, и при этом не играет никакой роли, что мы думаем об этих соотношениях. Это, по крайней мере, оставляет впечатление, что мы сталкиваемся с некоей существующей реальностью.
Но с этим согласны не все. Когда английский математик сэр Майкл Атья, получивший Филдсовскую медаль в 1966 году и Абелевскую премию в 2004 году, писал рецензию на книгу, в которой Конн излагал свои идеи, то заметил следующее (Atiyah 1995).

Любой математик не может не сочувствовать Конну. Все мы интуитивно чувствуем, что целые числа или, скажем, окружности и в самом деле существуют в некоем абстрактном смысле и платоновское мировоззрение (о нем мы подробно поговорим в главе 2. – М. Л.) необычайно соблазнительно. Однако как его отстоять? Трудно представить себе, чтобы во Вселенной возникла и развилась геометрия, будь Вселенная одномерной или даже дискретной. Может показаться, что с целыми числами мы чувствуем себя увереннее и что счет – это и в самом деле нечто существующее изначально. Однако представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать.

Поэтому Атья считает, что «человек создал  (курсив мой. – М. Л. ) математику посредством идеализации и абстрагирования элементов физического мира». Той же точки зрения придерживаются и ингвист Джордж Лакофф и психолог Рафаэль Нуньес. В своей книге «Откуда взялась математика» («Where Mathematics Comes From ») они приходят к такому выводу: «Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром» (Lakoff and Núñez 2000).
Точка зрения Атья, Лакоффа и Нуньеса затрагивает еще один интересный вопрос. Если математика – это целиком и полностью человеческое изобретение, универсальна ли она? Иначе говоря, если существуют внеземные цивилизации, будет ли их математика такой же, как наша? Карл Саган (1934–1996) полагал, что ответ на последний вопрос утвердительный. В своей книге «Космос» Саган, в частности, размышлял о том, какого рода сигналы передавала бы в космос разумная цивилизация, и писал: «Крайне маловероятно, чтобы какой-нибудь естественный физический процесс генерировал радиосообщение, содержащее только простые числа. Получив подобное сообщение, мы можем заключить, что где-то есть цивилизация, которая любит простые числа (пер. А. Сергеева )». Но можно ли утверждать это с уверенностью? Недавно физик и математик Стивен Вольфрам в своей книге «Наука нового типа» («A New Kind of Science ») утверждал, что так называемая «наша математика», вероятно, соответствует лишь одному из богатейшего ассортимента «вкусов» математики (Wolfram 2002). Например, вместо того, чтобы описывать природу при помощи законов, выраженных в виде математических уравнений, мы могли бы пользоваться законами иного типа, воплощенными в виде простых компьютерных программ. Более того, некоторые космологи в последнее время стали обсуждать гипотезу, согласно которой наша Вселенная – всего лишь составная часть множественной Вселенной  или мультиверса , огромного ансамбля вселенных. Если множественная Вселенная и вправду существует, вправе ли мы ожидать, что в других вселенных будет такая же математика?
--------------------------------------------------------------

                               
Категория: Книги
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск

Меню сайта

Чат

Статистика

Онлайн всего: 39
Гостей: 38
Пользователей: 1
Redrik

 
Copyright Redrik © 2016